

Sylph 超小型便携式气相色谱仪

亚速旺(上海)商贸有限公司 AS ONE SHANGHAI CORPORATION

> 让气相色谱分析更加容易便捷

小型·省电

通过浓缩器自动采样简单易懂的控制系统非破坏性检测

- ⇒ 现场分析
- ⇒ 不需要复杂的前处理
- ⇒ 初学者也可立即使用
- ⇒ 可与其他检测器连接 (如质谱仪、嗅辨用鼻罩等)

球型SAW传感器的原理

通过对球状压电体表面的叉指电极(IDT)施加高频信号来激发声表面波(SAW)。通常情况下,随着波的传播,由于衍射现象,它们会发散并失去能量,但在球体的表面,能呈几何状地收敛波。IDT 的设计理论上可以保持发散和收敛之间的平衡关系。由 IDT 产生振动的 SAW 可在球体表面无衍射多重环绕。SAW 的传播路径上有感应薄膜,而气体分子一旦被吸附在感应薄膜上,SAW 的传播时间和信号强度就会发生变化,这些变化随着环绕次数的增加而扩大,从而可以灵敏地检测出气体。球型 SAW 传感器是一个直径为 3.3 毫米的水晶球,结构紧凑,可常温运行,功耗极低。

文指电极 Tame A Tam

Sylph工作原理

Sylph配有一个带浓缩器的自动采样系统。样品气体首先由 泵吸入,然后进入一个充满吸附剂的浓缩器。接下来,通过 阀门切换流路,浓缩器被迅速加热,样品气体从吸附剂中释 放出来,再通过储氢合金罐提供的载运气体被导入柱中。球 型SAW传感器能够在不破坏气体的情况下,检测出从色谱柱 中分离出来的气体,并排放出去。

测定流程

开机

点击"起動"按钮运行初始程序

- 浓缩器预热
- 系统暖机
- ⇒只需10分钟即可开始 测试

条件设定

设置测量参数 设置的参数可以被保存和 调用

测量

点击"測定開始"按钮启动测量系统

- 1.捕捉样品气体
- 2.气体注入
- 3.测量
- 4. (反冲洗)
- 5.色谱柱冷却

结果

以CSV格式导出 色谱图和峰值数据

操作面板

操作面板简单易懂即使初学者也可简单设置

》分析实例①:清酒的顶空分析

图中显示了一个将清酒放在西林瓶中并分析其顶部气体的实验案例。对不同品牌的多种本酿造酒和吟酿酒进行 分析,检测到了几种气味成分,包括乙酸异戊酯、己酸乙酯和辛酸乙酯,这些都是已知的清酒的特征气味成分。 对比主要香气成分的峰面积,发现不同品牌之间存在着特有的差异。

测定条件

1.乙酸乙酯

5.乙酸异戊酯

2.酒精

3.不明

6.异戊醇

7.己酸乙酯

8.辛酸乙酯

4.水

采集量: 50ml 载气压力: 50kPa

色谱柱:强极性类型 (PEG)

柱温: 40°C(5分钟)-10°C/分钟~140°C(5分钟)

>分析实例②: 定性分析

球型 SAW 传感器与普通的气相色谱仪检测器,例如氢火焰离子化检测器(FID)和热导检测器(TCD)一样, 可以通过保留时间推测出化合物。未知组分的保留指数用两个分别前后靠近它的正构烷烃来标定,不同测量条 件下的保留时间计算后得到的保留指数可以互相比对。Sylph 以 csv 格式输出色谱图中每个峰值的数据,包括保 留时间,这样就可以根据这些值计算出保留指数。保留指数可以从文献、色谱柱相关技术文件或市面上的 GC 和 GC-MS 分析软件中获得。

测定条件

采集量: 50ml 载气压力: 50kPa 色谱柱:弱极性类型 柱温: 50°C (2分钟) -

10°C/分钟~180°C(5分钟)

气体	保留时间[分钟]		
正己烷 (C6)	2.51		
正庚烷 (C7)	3.31		
正辛烷 (C8)	4.69		
正壬烷 (C9)	6.45		
正癸烷 (C10)	8.36		
正十一烷 (C11)	10.23		
正十二烷 (C12)	12.03		
正十三烷 (C13)	13.74		

保留指数计算(程序升温)

未知成分I的保留指数Ii 由下式表示:

$$I_i = 100 \left[n + \frac{t_i - t_n}{t_{n+1} - t_n} \right]$$

t_i : 成分i的保留时间 tn+1,tn: n-正构烷烃的保留时间

气体	保留时间 [分钟]	保留指数 (实验值)	保留指数 (文献值)
В	2.95	655	659
T	4.19	764	767
E	5.76	861	864
m-X	5.91	869	871
o-X	6.35	894	897
C70	6.45	900	901
C90	10.30	1104	1102

分析实例③:定量分析

峰面积可以从输出的峰值数据中查看,通过测量已知浓度的气体,可 根据浓度和峰面积之间的关系建立标准曲线。根据标准曲线,可以对 目标气体进行定量。

输出的峰数据

	①峰编号	②保留时间	3峰高	4峰面积	5半峰宽	F
1	#	Retention	PeakHeig	PeakArea	fwhm(min)	
2	1	1.68858	0.76641	0.04568	0.06149	
3	2	1.89489	1.3469	0.29417	0.17748	
4	3	2.91202	2.55413	0.14113	0.05406	
5	4	3.71554	2.15904	0.12219	0.05777	
6	5	4.23716	3.50222	0.19551	0.05438	

例)乙酸异戊酯的标准曲线 10 未知浓度气体的 峰面积 标准曲线 峰面积 y = 0.2664x0.1 $R^2 = 0.9989$ 0.01 推算出的 浓度 0.001 0.01 0.1 100 浓度(ppmv)

主机	尺寸	宽133mm×高88mm×长174mm(不包含凸起部分)		
	重量	2.1kg		
电源		DC24V (端口5.5 x 2.1 mm) ※(带AC适配器100~240VAC, 50/60 Hz)		
	功耗	最大72W		
	与控制单元的连接	USB		
	工作环境	10℃~40℃、无冷凝水		
	气体进样口	连接器: 10-32 锥形头		
	气体排出口	连接器: 10-32 锥形头、可连接嗅辨用鼻罩(可选)		
控制部分	PC	Surface Pro 8、Windows 11		
	控制程序	内置		
	开机时间	启动运行后10分钟内(包括反冲洗)		
	关机时间	操作停止后5分钟内		
	输出数据	CSV文件格式		
载气气体	气体种类	氢气 ¹⁾		
	流量	1ml/分		
	供给方式	储氢合金罐 ^{2,3)}		
	容量	6L		
	最大时长	100小时		
浓缩器	吸附剂	从Tenax®TA, Tenax TA+Carboxen®1000中选择		
	采样量	1-1000毫升,可编程		
	注入温度	~240°C		
	清洗	启动时和测量后自动清洗		
色谱柱	固定相	从强极性、中极性、弱极性4) 中选择		
	温度范围	40°C~200°C		
	升温速度	最大20℃/分钟、可设定程序升温		
	冷却速度	5分钟内可从200℃降到50℃		
	清洗	附带反冲洗功能		
检测器	传感器	球型SAW传感器		
	感应膜	聚二甲基硅氧烷		
	运行频率	150MHz		

附属品

(1)	控制 PC	1台
(2)	用于控制 PC 的电源适配器	1个
(3)	主电源适配器	1个
(4)	USB 线	1条
(5)	储氢合金罐	2 个
(6)	储氢合金罐适配器	1 个
(7)	直径 6mm 的套筒连接接头	1 个

储氢合金罐

储氢合金罐配适器

φ6mm 的套筒连接接头

- 1) 可以用气瓶适配器(可选)更换载气。
- 2) 向储氢罐中填充氢气时,请自行准备氢气瓶或氢气发生器。
- 3)储氢罐长期使用时,罐内部的粘合剂的成分可能被检测出来。建议在使用约一年后更换。
- 4) 下表中的色谱柱类型为标准配置。如果您需要其他类型的色谱柱,请联系我们。

类型	固定相	长(m)	内径(mm)	膜的厚度 (μm)	用途
强极性	聚乙二醇(PEG20M)	30	0.25	0.25	一般分析,酯类,香料,酒精,芳香族
中极性	6% 氰丙基苯基 -94% 二甲基硅氧烷	30	0.25	1.0	VOC,酒精分析
弱极性	5% 联苯 -94% 二甲基硅氧烷	30	0.25	0.5	一般分析,卤化物,酚类

选配

气瓶转接装置

当载气是由储氢合金罐以外的来源时,如气瓶时。可用转接装置连 接 Sylph 主机的罐体安装部分和 1/8" 不锈钢管。

嗅辨用鼻罩连接管

可将气体排出口与嗅辨用鼻罩进行连接。

AS ONE

亚速旺(上海)商贸有限公司

information@mail.as-1.cn https://www.asonline.cn/

上海市黄浦区淮海中路755号新华联大厦东楼22楼B座 Block B, 22F, No.755 Middle Huaihai Road, Shanghai, China TEL 021-5403-3266 FAX 021-5403-6091

